Telegram Group & Telegram Channel
🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6420
Create:
Last Update:

🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6420

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA